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1.0 SUMMARY AND INTRODUCTION

1.1 Summary - Context of this Effort

The Cornell Live Information Objects (“live objects” for short) effort was undertaken to
overcome a limitation of the tools used to create modern information-enabled applications.

The US military has standardized on what are called the Global Information Grid (GIG)
architectural standards, which are a hardened version of the same Web Services (WS)
standards used in today’s web applications, such as search, e-Commerce, “cloud computing”,
etc. These technologies support sharing of information and collaboration but only for users
who have connectivity to some form of data center. As a result, while it is not difficult to build
powerful information-enabled digital dashboard applications that are sharable, those
applications become unavailable if a user lacks a high-speed connection to the base system.
For forward-deployed units, aircraft, or other kinds of uses in challenged networking
environments, users may have connectivity to one-another via tactical network links, but reach-
back to the base is often poor or non-existent.

The Cornell live objects work eliminates the reach-back dependency by supporting a powerful
new way of architecting distributed collaboration systems. This distributed collaboration
architecture [9][12][14][15] is easily extended, and permits even a non-programmer to create
and share secure, responsive, live collaboration tools that can adapt to run under widely varied
conditions. When users share the same object and capture information, for example images,
all see one-another’s updates in a secure, synchronized, fault-tolerant, and extremely fast
manner. Data travels directly from user to user, rather than indirectly through a data center.

While the live objects distributed collaboration architecture is an important contribution of this
work, as is the prototype platform, our effort went much further. Fundamental research
contributions were made at the level of the language, the system, the type checking scheme
used, the multicast protocols required for fast updates, and the underlying model. The
technology is available for public use under FreeBSD (Free Berkeley Standard Distribution)
public domain licensing.

1.2 Introduction - Core Research Objectives

Our effort focused on the following list of core research objectives, all of which were
accomplished over the course of the two year research program. We proposed to develop a
new form of live information management framework for coordinated Integrated
Communications and Control (IC2) planning.
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We indicated that the core capabilities of the platform would include:

1. A component-based object-oriented architecture and platform for constructing complex
applications by composing smaller “live objects” that encapsulate interactive GUI
(Graphical User Interface) functionality, event-processing logic, protocols (including
replication protocols) and media feeds.

2. Consistent use of drag-and-drop interfaces throughout the system, to facilitate creation
of new decision-making support tools and adaptation or extension of existing tools,
often by non-programmers working in the field.

3. A powerful “properties language” that can endow live objects with sophisticated
reliability, coordination and synchronization protocols, expressed in a new high-level
language. Not only can this language express important existing concepts, but it also
facilitates implementing new ones down the road.

4. Synchronization mechanisms to assist in coordination when complex human-in-the-loop
decision processes are mediated by applications built using live objects.

5. Hierarchical tools for building new objects by mutating existing information objects, for
example by replacing object members with other compatible members, modifying
embedded parameters, or replacing existing event handling logic with new logic.

6. Compatibility with SOA (Service Oriented Architecture) technologies such as Web
Services and ESB (Enterprise Service Bus).

7. Cross-platform compatibility with Windows, Linux and other systems.

In agreeing to fund the work, AFRL (Air Force Research Laboratory) stipulated that as a part of
the activity, we enter into close dialog with “owners” of C2 (Command and Control) digital
dashboard applications and architectures. We did so, exploring a number of standard military
solutions and also creating close working relationships with colleagues at AFRL and also in the
office of the Air Force Chief Information Officer (CIO) and Chief Technology Officer (CTO). We
briefed two different CIOs (Mr. Gilligan and Mr. Tillotson) and one CTO (Mr. Werner), and they,
in turn, briefed the current CIO (General Lord) and various teams that they designated through
a primary technical liaison, Dr. Coimbitore (Sekar) Chandersekaran. Through these contacts
and others, we identified specific scenarios of strong interest to the Air Force and were able to
turn those into less sensitive challenge problems suitable for study in an academic setting with
student involvement, mocked up the solutions, and demonstrated them [1][2]. As this effort
ends, the current CIO (General Lord) is exploring options for transitioning the technology to a
vendor who would be tasked with incorporating the prototype into a JFEX (Joint Forces
Expeditionary Exercise) exercise late in 2011 or early in 2012. Cornell would subcontract to
assist in this activity, if it occurs.
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As noted, our solutions are real and available for download under a FreeBSD license with no
patent or other restrictions. Our publications document the hard problems we solved and
represent a roadmap that others could follow to extend their own digital dashboards with the
same kinds of GIG-compatible distributed collaboration capabilities seen in our solutions.

2.0 METHODS, ASSUMPTIONS, AND PROCEDURES - OVERVIEW AND
MAJOR FINDINGS

Developers who work with modern component integration and productivity tools can create
desktop applications faster and more easily than ever before. These tools promote a style of
development in which the language, runtime environment, debugger and profiler create a
seamless whole. The military has ambitious plans to use information dashboards in many
settings, including for purposes such as battlefield coordination, search and rescue, and in
support of forward deployed units. The vision is compelling and has wide applicability at many
levels of military planning and task execution. Broadly, planners create information
applications using a “drag and drop” style, then distribute them to users, who can carry the
application into the field and collaborate by interacting with the applications from devices with
all sorts of form-factors and interfaces.

This compelling vision runs up against limitations of the GIG standards [12][11][14][15], widely
adopted by the industry and supported by enhanced versions of the same powerful
development tools used to create web applications for commercial networking purposes. The
problem is that because the commercial network focuses on continuous connectivity, the tools
for building collaboration tools tend to depend upon the data center itself, which plays various
critical roles. For example, when updates occur, the typical GIG system is expected to relay
them into the data center, which then uses a form of data distribution system called an
enterprise service bus (ESB) to distribute the data to servers connected to other users. The
data is then relayed back out. Thus, lacking connectivity, the application freezes, even if the
collaborating users are physically close to one another and have good networking links to each
other. Moreover, even with perfect connectivity, those links back to the data center may be
long and slow, and scalability of ESBs is known to be very poor [18]. Thus, with more and more
users generating updates, these traditional approaches tend to slow down. They work well
only if there is only a single source for each kind of update, and that pattern, while common
and important, is just one of many patterns seen in the kinds of important scenarios we
analyzed.

This means that if an application would be used by disconnected users or by forward-deployed
units with poor connectivity back to the data center (and here users might include aircraft,
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troops on the ground or on vehicles, weapons with integrated targeting or other technology),
the application will be slow, will often freeze up, and may have very limited functionality. In
the standard GIG architecture, a disconnected application is useless.

Consider a typical information-enabled digital dashboard application [1]. A forward deployed
unit has been tasked to search a village for insurgent activity. Troops have maps, and spread
out to conduct the search. As they work, they capture images, mark up the map with notations

27 “" ” “"

(“clear”, “possible bobby trap”, “insurgent stronghold”, “elementary schoo

I”

, etc). Ideally, this
data would be shared, forming a unified, replicated, application “state” that is automatically
and consistently updated when changes are made, and that enforces security policies as
needed and appropriate. Perhaps they come under fire; crouched behind walls and in
doorways, the soldiers consult their applications to see where the snipers are located and the
tool should help them divide up the task of responding. It might integrate ground and air
assets: the Army unit on the ground could share information with an F-16 squadron overhead,
which flies in to take out an insurgent stronghold while avoiding the locations of our troops and
the Iraqi soldiers working with them. Information tools, if they can be customized and if they
work properly, can transform the battlefield.

Constraints such as the GIG reach-back connectivity requirement cripple this application. With
the connectivity rule, the moment our team leaves their home base, they lose network reach-
back to the data center and hence the application becomes frozen in whatever state it had at
that instant. No sharing can occur unless the troops happen to have extremely fast tactical
network links back to the base: a completely unrealistic requirement that is rarely (if ever)
satisfied in the field. Thus, the GIG development tools deny our military a critical and extremely
powerful form of information-enabled tool for the planner, the warfighter, and for coordination
with our allies.

Yet it turns out that this reach-back requirement isn’t fundamental. The GIG standards can
interoperate with “edge” protocols; commercial vendors such as Google simply haven’t found it
worthwhile to offer that possibility to their application developers [12][14]. Our project at
Cornell undertook to fill the gap, and in the process we created a new information architecture
that builds on the GIG standards but focuses on distributed collaboration. Doing so required us
to research the underlying issues (which pose rich scientific questions), and to apply our
prototype system to real problems obtained through dialog and collaboration with colleagues
at AFRL and in the office of the Air Force Chief Information Officer and Chief Technology Officer,
who both became keenly interested in the work we did and are actively exploring transitioning
opportunities into major military systems. Our Cornell effort has ended as of December 2010,
but we believe that the Live Objects platform has already had a real impact on the Air Force and
on the thinking of the research community, as well.
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Central to our work has been the recognition that only by defining an architecture capable of
integrating direct sharing between collaborating users of a live objects application with GIG
services running in data centers would it be possible to satisfy all our goals. The insight comes
down to this: a great deal of data already exists and lives within GIG-compliant data centers.
But much of the information collected as an application is used in the field by forward deployed
units will be exchanged over tactical links in a peer-to-peer manner. Thus, we simply need to
find ways for these two styles of communication to coexist.

For example, consider the scenario illustrated in Figure 1, which is intended to evoke the movie
Minority Report, in which a police unit’s
members worked together to identify the
location of a crime so as to intervene and
prevent it. Users of the system pulled
information of various kinds into the shared
scenario: city maps, images, data from
databases, videos from real-time feeds in the
city itself. Working together, they rapidly

solved their problem. The live application

could then be carried into the field as the unit figyre 1 Sharing a Live Object.

deployed to prevent the crime. In our earlier

scenario, we might combine maps and other intelligence, previously prepared by intelligence
analysts, with data collected in real-time as the soldiers sweep the village, clear buildings, come
under fire, defeat insurgents, etc. This mixture of data center and peer-to-peer information is
inevitable. By ignoring half the story, existing GIG-based platforms stand on one leg.

Cornell’s live object platform enables the creation of objects that are best understood as
distributed mechanisms whereby a group of software components can communicate with each
other, share data, exchange events, or coordinate actions. Unlike the usual GIG platforms,
these objects can communicate in any way that makes sense for the developer. Often, this
sharing occurs in a decentralized, peer-to-peer fashion, but it can also use the standard GIG
approach of fetching data from a data center or relaying data through it. Thus, Cornell’s
platform is a bit like the one used in Minority Report, and very different from the platforms
currently available from the vendors providing GIG solutions. Yet, as we’ll see further below,
the solution is fully GIG compliant. We simply go beyond the point at which existing GIG
platforms stop: we took an important next step, solving the research questions it posed.

A live object can represent, for example, a streaming video, a news channel, the weather, a
map, intelligence information about a set of targets, data about troop locations, data about
hazards, collaborative documents, replicated variables, or even fault-tolerant services. The
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approach is intended to scale. The platform was conceived with the goal of showing that it is
possible to create completely new forms of collaboration and coordination applications for a
wide range of uses and for a wide range of deployment environments, including autonomous,
self-managed applications that could literally span the globe, all the time respecting GIG
standards even as we go well beyond what they are traditionally used to accomplish today.
Obviously, the applications of interest demand high security and other assurance guarantees;
our solution responds using a novel form of type checking in which type assertions and type
exceptions play the roles of access control and the blocking of unauthorized actions.

From the programmer’s perspective, live objects are an encompassing solution that take a wide
range of earlier technologies such as multicast, group communication, publish-subscribe, or
state machine replication, and then puts them under a single umbrella: a common architecture
that models all of these seemingly different and often proprietary solutions in a standardized
manner, allowing them to interoperate flexibly and securely by means of strongly typed event
passing. Development and debugging tools work in a natural way.

The system is easy to use. The initial creation of a new kind of live object is done by a
programmer. For example, suppose that we want to create an object representing a new kind
of aircraft. The programmer implements the object itself by writing code using a simple, event-
driven style in CH#, Java, C++, Visual Basic or some other popular language. Often the desired
object will consist of two or three sub-objects that compose into a solution, with each
specialized for a different role. For example, an aircraft object might have a component to track
the aircraft position (by capturing coordinates from a radar, or via telemetry from the aircraft
itself), a component to render the “skin” of the plane, and a component that takes the
coordinates and uses them to tell the graphics engine of the display system to reorient, resize
and then redisplay the aircraft.

What does “composition” mean in an object-oriented application of this sort? The basic idea is
that live objects use a typed, extensible event representation to exchange data. A GPS (Global
Positioning System) coordinate tracking object, for example, might have an interface through
which it emits coordinate objects, one object each time it senses a significant change in the
orientation of the aircraft. It “finds” the aircraft through configuration parameters supplied to
the object when it is created, and those parameters, in turn, can come from the runtime
environment, or be supplied by other objects. For example, in our case they would specify the
GPS data source to read and the aircraft to track, if that source can track many of them.

When two objects are composed together a new object results. Composition involves taking
some of the output ports of one object and binding them to input ports of other objects. Type
checking is done to make sure the types match and also to perform security validation, as
explained later in more detail [9][12][19]. Thus, remaining with our example, we could
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compose a GPS tracker object with an airplane render object: each new coordinate would be
read by the GPS tracker, packed as an event, emitted on the output port, read into the input
port of the renderer object, unpacked, and then it would reoriented the aircraft. In live objects,
there are standard display objects for 2D and 3D rendering: these take events (like any object)
but interpret them as instructions for the underlying display system, which in our prototype
uses Windows XNA (the Windows 3D graphical rendering subsystem).

Some objects are coded from scratch, but very often one can avoid doing so by taking some
existing object and customizing it: changing the way it captures state information, the way it
displays the object, the rendered “skin”, etc. Objects can be edited, using a simple visual editor
of our own design, and can be composed with one-another in a modular, flexible, manner
provided that their output and input types match on the ports that are designated for the
composition. In this way, a graph of interacting objects is created, representing some entity of
interest. Through such steps, one creates objects representing every kind of entity seen in the
deployment environment, with each object “instance” parameterized to match the appropriate
object category with a means of capturing the kinds of data needed for some specific use.
Other objects could represent orders, locations of friendly or enemy forces, buildings, etc.
Objects can also hold groups of other objects: a city object might contain building objects; a
helicopter squadron multiple helicopters, and so forth.

What about data that would be found in an information management system like a file or a
database or a web service? Here, one uses live objects that employ the GIG (Web Services)
standards to pull the desired information from a data center in the normal model, which (as
noted repeatedly above) does entail continuous connectivity between the object and the data
center; if the connection is lost, the object will experience timeouts on its requests (and should
handle them in an appropriate manner that won’t freeze up other objects that aren’t having
this problem). Our prebuilt library of live objects includes objects that fetch weather data,
maps, information about buildings and points of interest, etc, from a diverse set of web sources
such as Google, Microsoft, the FAA (Federal Aviation Administration), etc. Since the objects can
coexist, this means that we can easily create compositions (“mashups”) that combine data from
Microsoft, Facebook and Google in a single context [1]. What makes these objects live is that
they poll at some frequency, reissuing requests (perhaps, with revised GPS coordinates if the
underlying data is in a map), and then send update events to surrounding objects.

The platform is smart about event passing and we should note that zero copying occurs when
objects exchange events in this manner. Thus even a very large object like a map or a high-
resolution image can be passed around very easily.

The reader should now have an image of a live object as a graph of subobjects that are
connected to one-another by binding output ports to input ports and interact via event passing.
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The type of an object is the set of types associated with its ports. A composed object also
exposes input and output event ports with types. Once created, objects can be saved like files,
or stored in databases. They have an XML (Extensible Markup Language) representation, like a
web page, in which the .NET byte code source for the object can be included, but can also be
identified via URL (Universal Resource Locator). This allows a new object to be downloaded,
byte-code checked for safety against local platform rules (which could disable this feature), and
then executed. Thus a previously unfamiliar kind of object can still be passed to a user and
executed safely.

But this discussion has said nothing at all about replication. Live objects treat replication as a
fundamental feature of the environment: every object is “understood” to run as a set of
replicas, and live objects makes it easy for those replicas to find one-another and form
communication connections via the standard IP (Internet Protocol) protocols: TCP
(Transmission Control Protocol), UDP (User Diagram Protocol) and IP multicast. Live Objects
doesn’t require that a set of replicas connect to one-another, but the assumption is that most

IH

objects will “somehow” arrange to keep their replicas in synchronized, consistent states. For
many objects this is done by composition with some prebuilt “multicast” object that takes
events and then broadcasts them to the other replicas of the same object type: a broadcast

within a set, hence the term “multicast”.

So, returning to our earlier example of an aircraft object, rather than have the GPS capture data
and hand it directly to the local rendering object (which would give functionality on a single
machine but not keep replicas in sync) a more standard approach would be this. First, the GPS
object would be built from what we call the “leader pattern”: a type of object in which there is
a set of passive replicas and one designated leader, selected by the live objects system, which
plays a special role. If the leader fails or leaves the system, a new leader is picked. This ensures
that just one GPS tracker is active at a time even in a group that might include 20 replicas of the
GPS tracking function (one each on 20 end-user machines).

This leader reads GPS updates, as before, but now passes the events to the input port of a
multicast object, which multicasts the data to its other replicas, presumably on those same 20
machines. Incoming data is passed back into the GPS object replicas (the full set of 20 passive
objects plus the 1 leader), and only now does the composed object pair emit an event to the
render. By selecting a multicast object that offers a totally ordered, secure, fault-tolerant
protocol (also called an “atomic broadcast” primitive), all replicas see the same events, in the
same order, and thus the aircraft exhibits identical behavior on all machines. A special “state
transfer” function is used when a replica joins a preexisting group (e.g. a 21°* member of the
squadron launches his live objects application): this enables the object to catch up by reading
state data from the leader over a special, out-of-band, TCP connection.
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How does a multicast object “work”? We have several versions, developed over many years.
One kind of multicast object just relays data via a standard GIG publish-subscribe message bus,
in the manner of a normal, internet-hosted, web application. It performs poorly, however,
because all data must relay through the data center, and freezes if the datacenter connection is
lost. A second kind of multicast object uses IP multicast to send data directly from peer to peer:
it offers stunning speed, but obviously can only be used when IP multicast is available. In fact it
comes in two flavors: one with strong realtime guarantees (the Ricochet protocol [20]) and a
second with strong logical consistency properties (the Quicksilver Scalable Multicast protocol
[18]). Yet additional solutions can be devised using purely TCP, or other options. Indeed, one
group of students used Twitter to implement multicast as a classroom project. That object was
slow... but it worked.

Notice that even a multicast object can have various “types” of guarantees: total ordering,
reliability, timing guarantees, etc. We view these as a form of types and indeed our event-
based composition system can do type checking at this level of detail [13][10]. Thus, an
application that requires a totally ordered and lossless multicast would throw an exception if
composed with an object that only implements FIFO (First In First Out) ordering, or that has
realtime guarantees but only offers probabilistic loss recovery if a packet is lost. This exception
occurs at compile time if the objects are statically composed by the designer, but can also
happen at runtime, if an object is designed to select from a set of candidate objects on the basis
of runtime conditions.

Thus, the user effectively creates a kind of web page that can be saved, loaded and executed.
Running the web page launches new replicas of the various objects in the assemblage: often
tens or hundreds of them (we’ve tested with tens of thousands). The objects form themselves
into groups, initialize via state transfer from group leaders, and then maintain tight
synchronization, in whatever manner the designer selected.

Use of an object requires appropriate permissions: access permissions to even read the object
and load it, but also runtime permissions to join the existing object group, and these
permissions can be based on a hardware root of trust such as a CAC (Computer Access Card)
card or a trusted computing chip on the user’s computer. A form of type exception is thrown
when security rules are violated, and the system refuses to perform the action. Thus, an
unauthorized individual is prevented from accessing objects without permission, modifying
them, launching them, adding information to a running scenario, etc. The policies can be fine-
tuned to match the desired use and cannot be subverted without breaking the underlying .NET
system security.

Because most objects are created well before being used, live objects can often be used
without any programming experience at all. Imagine a squadron leader preparing his or her
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team for an engagement. The leader receives tasking orders and sits down at a computer,
browsing through virtual folders containing data appropriate to the situation, accessing them
much as one accesses files containing images or videos, and deciding which ones bring value to
the forward deployed unit members. Those useful objects are then combined to create the
runtime scenario: The leader simply drags and drops the desired objects to create live
documents -- web pages, slide shows, and so forth. He or she then shares the application with
the individuals who will use it, who carry it into the field. Each object has some replicated state
that will be seen in a consistent and coordinated manner by all users who have a replica of it.
Moreover, if permitted, those users can further upload data, for example by capturing images
or annotating existing objects. Given the connectivity required for that form of object, updates
should be instantly and consistently replicated to other squadron members. If connectivity is
lost, only those objects that depended on that form of connectivity will be impacted, and they
would only “lock up” if designed to do so. For example, a map object might simply continue to
display the old map rather than going blank or throwing error messages up to the user. This
stands in sharp contrast to today’s web services solutions, which are so dependent upon
continuous connectivity that if connectivity is lost, they often crash. (As an example: the iPad
has a map application, and it can function like any GPS device, tracking your car and giving
driving instructions. But if the iPad loses its network connection, the map vanishes and an error
box appears: not the most useful functionality if one is driving into the woods!)

What makes live objects so exciting is that they are a gateway to a completely new vision for
the Web: they enable a new kind of information-enabled Web that, for the first time, is truly
active. Unlike today’s GIG, which is hard-wired to the Internet and cannot support true mobility
and disconnected operations, live objects have no such restrictions: while an object that uses
GIG standards would indeed freeze up without a connection (and we do support such objects),
those using peer-to-peer communication remain capable of disconnected, agile, adaptive
behavior even when disconnected from the military Internet.

3.0 RESULTS AND DISCUSSION - CORE ELEMENTS OF THE LIVE OBJECTS
ARCHITECTURE

In this section we offer more detailed definitions of the key elements of the live objects
architecture. Among our papers, [19] offers a comprehensive treatment of the topic.

We have been somewhat informal in our use of the term live object. More specifically, a live
object is a running instance of a distributed multi-party (or peer-to-peer) protocol. Live objects
have an object-oriented presentation: they are entities with a distinct identity, that encapsulate
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internal state and may have threads of execution, and that exhibit a well-defined externally
visible behavior that can be modeled as a “type”.

Figure 2 is an illustration of the basic concepts involved in the definition of a live distributed
object.

Figure 2 An illustration of the basic concepts involved in the definition of a live distributed object.
The key concepts mentioned here are defined as follows (read [10][11][12] for details):

o Identity. The identity of a live distributed object is determined by the same factors that
differentiate between instances of the same distributed protocol. The object consists of
a group of software components physically executing on some set of physical machines
and engaged in mutual communication, each executing the distributed protocol code
with the same set of essential parameters, such as the name of a multicast group, the
identifier of a publish-subscribe topic, the identity of a membership service, etc. Thus,
for example, publish-subscribe channels and multicast groups are examples of live
distributed objects: for each channel or group, there exists a single instance of a
distributed protocol running among all computers sending, forwarding, or receiving the
data published in the channel or multicast within the group. In this case, the object's
identity is determined by the identifier of the channel or group, qualified with the
identity of the distributed system that provides, controls, and manages the given
channel or group. In the case of multicast, the identity of the system might be
determined, for example, by the address of the membership service (the entity that
manages the membership of the multicast group).
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Proxies (replicas). The proxy or a replica of a live object is one of the software
component instances involved in executing the live object's distributed protocol. The
object can thus be alternatively defined as a group of proxies engaged in
communication, jointly maintaining some distributed state, and coordinating their
operations. The term proxy stresses the fact that a single software component does not
in itself constitute an object; rather, it serves as a gateway through which an application
can gain access to a certain functionality or behavior that spans across a set of
computers. In this sense, the concept of a live distributed object proxy generalizes the
notion of a remote procedure call stub.

Behavior. The behavior of a live distributed object is characterized by the set of possible
patterns of external interactions that its proxies can engage in with their local runtime
environments. These interactions are modeled as exchanges of explicit events
(messages).

State. The state of a live distributed object is defined as the sum of all internal, local
states of its proxies. By definition, it is distributed and replicated. The different replicas
of the object's state may be strongly or only weakly consistent, depending on the
protocol semantics: an instance of a consensus protocol will have the state of its replicas
strongly consistent, whereas an instance of a leader election protocol will have a weakly
consistent state. In this sense, the term live distributed object generalizes the concept of
a replicated object; the latter is a specific type of live distributed object that uses a
protocol such as Paxos, virtual synchrony, or state machine replication to achieve strong
consistency between the internal states of its replicas. The state of a live distributed
object should be understood as a dynamic notion: as a point (or consistent cut) in a
stream of values, rather than as a particular value located in a given place at a given
time. For example, the externally visible state of a leader election object would be
defined as the identity of the currently elected leader. The identity is not stored at any
particular location; rather, it materializes as a stream of messages of the form elected(x)
concurrently produced by the proxies involved in executing this protocol, and
concurrently consumed by instances of the application using this protocol, on different
machines distributed across the network.

Interfaces (endpoints). The interface of a live distributed object is defined by the types
of interfaces exposed by its proxies; these may include event channels and various types
of graphical user interfaces. Interfaces exposed by the proxies are referred to as the live
distributed object’s endpoints. The term endpoint instance refers to a single specific
event channel or user interface exposed by a single specific proxy. To say that a live
object exposes a certain endpoint means that each of its proxies exposes an instance of
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this endpoint to its local environment, and each of the endpoint instances carries events
of the same types (or binds to the same type of a graphical display).

References. The reference to a live object is a complete set of serialized, portable
instructions for constructing its proxy. To dereference a reference means to locally parse
and follow these instructions on a particular computer, to produce a running proxy of
the live object. Defined this way, a live object reference plays the same role as a Java
reference or a C/C++ pointer; it contains complete information sufficient to locate the
given object and interact with it. Since live distributed objects may not reside in any
particular place (but rather span across a dynamically changing set of computers), the
information contained in a live distributed object's reference cannot be limited to just
an address. If the object is identified by some sort of a globally unique identifier (as
might be the case for publish-subscribe topics or multicast groups), the reference must
specify how this identifier is resolved, by recursively embedding a reference to the
appropriate name resolution object.

Types. The type of a live distributed object determines the patterns of external
interactions with the object; it is determined by the types of endpoints and graphical
user interfaces exposed by the object's proxies, and the patterns of events that may
occur at the endpoints. The constraints that the object’s type places on event patterns
may span across the network. For example, type atomic multicast might specify that if
an event of the form deliver(x) is generated by one proxy, a similar event must be
eventually generated by all non-faulty proxies (proxies that run on computers that never
crash, and that never cease to execute or are excluded from the protocol; the precise
definition might vary). Much as it is the case for types in Java-like languages, there might
exist many very different implementations of the same type. Thus, for example,
behavior characteristic to atomic multicast might be exhibited by instances of
distributed protocols such as virtual synchrony or Paxos.

The semantics and behavior of live distributed objects can be characterized in terms of

distributed data flows [10]; the set of messages or events that appear on the instances of a live

object's endpoint forms a distributed data flow.

Quicksilver Scalable Multicast and Ricochet Real Time Multicast

Two important pre-built live objects are those that encapsulate Cornell’s Quicksilver Scalable

Multicast and Ricochet Real Time Multicast protocols. These two protocols were created in

prior work, and then converted into live objects during our effort. They are key workhorse

components of the typical application, carrying traffic on behalf of the objects that render

graphics or capture information like images and GPS coordinates.
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In this section we will say a bit about the

App; {++'| Appn || Visual Studio || Shell

problems each of these multicast objects solves

and how they do so. Before doing this, however, [ the live object abstraction |

it may be useful to briefly look at the architecture
[asm||asi2]| GO .- |

communication “drivers”
QuickSilver

of the live objects platform, so that the reader

can orient him or herself about the functionality

of the various layers of the system per-se.

.NET Framework

The resulting system is built in layers (Figure 3 -
Operating System

which assumes that Quicksilver Scalable
Multicast [18] is being used for replicated updates). Figure 3 Layers of the Live Objects platform.

The user’s code and applications run as normal

Windows applications in the .NET framework, which itself is implemented over the Windows
Operating System (yellow boxes on top, blue below). Quicksilver Scalable Multicast is a
multicast protocol that runs on the Windows system; one of several that can play this role.

The live objects abstraction is a set of extensions to the Windows .NET infrastructure that
mediates when objects are launched, when they are composed, and when runtime type-
checking actions are required. The basic focus of this layer is on the embedding of our new
object interfaces into the.NET Common Language Runtime, and the hooks connecting the
objects to the .NET type system and to the Windows shell (the GUI that interprets mouse
actions, such as right-clicking on a file).

As can be seen in the illustration, Quicksilver Scalable Multicast is a free-standing multicast
protocol that runs on Windows, but it has been “wrapped” with APIs (Application Programming
Interfaces) that allow us to use it as a Live Object. One can also bring other protocols into the
solution simply by using the same standard API, and we have done so for the Ricochet Real
Time Multicast protocols [20] (not shown in figure 3). Other possible protocols that might be
created in the future could include a multicast protocol focused on wireless mobility within
tactical networks; such a step would make it possible to “port” a live objects application created
in a wired network so that it would run properly in a tactical environment.

Briefly, here’s a summary of the abstract functionality provided by a live object:

1. Each object has an Internet-wide unique name and is registered in a global distributed
“directory” resembling a DNS (Domain Network Service), where it can be located by the
software components that wish to access it.

2. Live objects have “distributed” types. Among other things, type-checking helps verify
that the communication “type” beneath an object matches the developer’s intent.
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3.

III

A live object provides a “natural” interface to its clients. An object representing a video
stream would provide methods to send or receive video frames. An object that
represents a replicated variable would provide get/set methods, etc.

Each object also has object-specific “logic” implementing some abstraction: a room, a
medical record, a gossip-based overlay network, etc. This logic is translated into code
that is deployed on and executed by the components accessing the live object. The
protocols for replicating the object’s data among components and for multicasting
events among them are provided by type-specific underlying “communication drivers”.
When a component tries to access a live object, an authentication and join protocol
executes. This is used to enforce security, fetch the object’s “logic” from the distributed
live objects directory, obtain a snapshot of the object’s state, initialize it etc. The

object’s code maintains its state in response to event notifications.

The underlying communications layer is modeled as a set of “pluggable” communication

substrates, which play a role analogous to that of a device driver. Each live object needs a

“communication driver” to replicate its state, propagate events and updates; different objects

might use different drivers specialized for different settings [wireless, WAN (Wide Area

Network), LAN (Local Area Network)] or properties (secure, low latency, etc). QuickSilver allows

existing multicast and group communication toolkits to be adapted for use as communication

drivers. It also comes with a suite of built-in scalable and high-performance communication

drivers for common types of applications, and designed to complement each other:

QSM (Quicksilver Scalable Multicast) is optimized to support large numbers of live
objects that may represent streams of events, such as video channels, file backup
folders, or stock price update notifications in a trading system. The current version of
QSM is designed for enterprise LANs and datacenters. It can support tens of thousands
of event streams, hundreds of users, and transmissions at network speeds. Events are
delivered reliably, and the system is robust under stress.

Ricochet (Ricochet Real Time Multicast) is a protocol that offers slightly weaker
reliability properties in exchange for extremely powerful real-time guarantees at very
high data rates. The basic approach is to send each message as an IP multicast, but to
use additional IP multicasts that carry forward error correction (FEC) codes and can
recover lost data before the loss is even noticed. However, Ricochet doesn’t provide
the very strong “TCP-style” reliability of QSM, nor is it designed to scale as well.

GO (Gossip Objects [6][8]) is an extension of the live objects system that was developed
jointly by Cornell and a team at IRISA (Institute de Recherche en Informatique et
Systémes Aléatoires)and the University of Rennes, in France. It uses the so-called gossip
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protocols to build live objects that can help systems manage themselves, set their own
configuration parameters, and even diagnose and self-repair when failures occur. In
this manner, a wide range of gossip protocols can be integrated into the live objects
setting.

We noted earlier that there are also live objects that interconnect via GIG and Web Services
protocols to standard data sources such as Google Maps, Yahoo Weather, Microsoft MSN
Streets, the FAA and other web sites. We expect this list to grow over time, with protocols to
support wireless communication, IPTV (Internet Protocol Television), security protocols, and
protocols with real-time properties. Obviously, for these kinds of protocols, events occurring
on the client (such as movement that changes a user’s location) must be relayed into the data
center and then echoed back out to other replicas, hence these are layers that will freeze up if
the back link to the data center becomes unavailable.

3.2 Extreme Scalability

Live objects could become popular, and one lesson of the modern Internet is that popular
technologies must scale in a flexible, elastic manner. We tackled this question in the context of
live objects that run over the Quicksilver Scalable Multicast layer (QSM). Although brevity
precludes a highly technical discussion of scalability, a great deal of research went into the
problem, and we summarize the approach taken and results obtained (see [18] for details).

Recall that QSM'’s role is to reliably multicast data in support of higher level “events” related to
a number of live objects, such as updates to their state, commands that cause actions to occur,
etc. In a typical datacenter scenario, some computers might be using large numbers of live
objects, and different live objects could be shared by the same computers. The groups of
computers on which these live objects “live” might thus overlap. The world of QSM is one of
vast numbers of “overlapping” groups.

Let’s make a simplifying assumption (we can remove it later). We’ll assume that the overlap is
clean and hierarchical. For example, there might be “big” objects A, B, and C directly
superimposed, i.e. such that the groups of computers using them overlap perfectly. The
hierarchy could also include subsets. For example, perhaps object D lives on half of these
computers, and E on the other half. QSM starts by decomposing such a hierarchy of overlapping
groups into a set of regions, by clustering computers based on their “interest”. Each region
contains computers that use the same live objects.

QSM now constructs a data dissemination overlay for each region. If possible, IP multicast is
employed for this purpose (e.g. each region could be assigned its own IP multicast address).
However, since IP multicast isn’t always available, QSM can also run on some form of overlay
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multicast technology. Dissemination is unreliable: like a UDP transmission in the Internet, a
message might reach none of its destinations, some of them, or (if we are really lucky) all.

Next, QSM builds a peer-to-peer repair structure within each region. This involves many subtle
issues, but the basic approach starts by constructing a logical token-ring that links the
computers in the region (if a region gets larger than about 25 computers, we break the ring into
a tree of smaller rings, linked by a higher-level ring). As the token travels around the ring, a few
times per second, we efficiently encode the received message set of each computer. A
machine that has a copy of a message some other machine lacks forwards a copy. If an entire
region lacks a multicast, the sender re-multicasts it. In our experiments this is very rare; most
packet loss involves a single machine that drops a single packet or a few in a row, and can be
repaired locally with the help of a nearby peer.

Clustering computers into “regions” enables QSM to handle large numbers of live objects
efficiently, by amortizing overhead. While in a traditional system, tens of thousands of live
objects would involve tens of thousands of multicast protocols, QSM can use a smaller number
of token rings, each of which works for multiple objects at once.

To handle computer crashes, QSM incorporates a hierarchical status-monitoring service
structured a bit like the Internet DNS, but designed to track the health of components (live or
failed), as well as some additional information used within our protocols. A consensus protocol
is employed to ensure that the membership decisions will be consistently reported.

Obviously, we’re skipping a lot of details, such as the flow-control mechanism used, data
aggregation when multiple small messages are sent to the same group, etc (interested readers
can find more information in the technical reports on our web site). But the upshot is that QSM
seems to break every performance record we’re aware of. We’ve scaled it to many thousands
of groups (live objects) per computer, supported groups with hundreds members, and are able
to saturate 100Mbit Ethernet interconnects with inexpensive PCs on the endpoints. The system
is stable under stress, and very well tolerates load fluctuations, broadcast storms, or other
degenerate behaviors. Moreover, even at the highest loads, overheads are quite low.

Now, all of this reflected a simplifying assumption, namely that groups are hierarchical. But it
turns out multiple QSM hierarchies can be superimposed (Fig. 4). We're finding that even very
irregular sets of overlapping groups can be “covered” with a surprisingly small number of
hierarchies, provided that groups have Zipf-like popularity and traffic levels. For example,
studies of financial instruments show that the i'th most popular stock or bond tends to be
popular in proportion to 1/i® where the exponent, a, can be as large as 2.5 to 3.5. It seems
reasonable to assume that in the Active Web, if applications use large numbers of live objects in
irregular ways, the same property would hold.
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In further work, we extended this basic idea to look at other cases in which correlation patterns
of similar kinds can be leveraged to optimize the behavior of communication systems. As of the

Figure 4 Key to QSM scalability is an algorithm for finding hierarchical structure (right) in overlapping groups (left).

end of this grant, we’ve used the approach to solve the following questions, in each case giving
rigorous machine-learning solutions that “learn” by observing the actual patterns of correlation
in a system, then applying an optimization that allocates some scarce resource in an optimal
manner, and finally using the result to control the underlying system [7]:

e Managing IP multicast addresses in large-scale settings (Dr. Multicast)

e Merging similar object groups into larger groups to reduce the per-group overheads

e Performing flow control within multicast groups (AJIL)

e Selecting a communication target when a platform is asked to send messages
periodically and has multiple “clients” issuing those requests, with different biasing
functions. Here we make optimal target selections, subject to a utility function.

e Deciding how to group data into larger messages, so that instead of sending a single
small message, we can send a larger message that might carry information on behalf of
multiple applications, each with its own priorities and perhaps with different layouts of
group members.

e Building information dissemination overlays whereby data centers or other sources can
share links to send data in WAN settings, overcome obstacles such as bottlenecks or
firewalls, and ensure reliability without sending redundant data that overloads
members pointlessly.
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3.3 Gossip Objects

A second approach to scaling was explored in a joint project we undertook with researchers in
France, at IRISA/University of Rennes. Here, the idea was to use “gossip” multicast protocols to
achieve scalability with very stable and predictable loads [6][8].

The GO (Gossip Objects) subsystem of the live objects distribution builds a random peer
selection layer and then constructs a variety of gossip and epidemic mechanisms over it,
presenting these as live objects that can perform tasks such as tracking overall system state,
assisting in auto-configuration or repair, and constructing the overlay networks needed for
QSM’s dissemination layer. The key problem here involves optimization. First, because
multiple objects run on the same machines, whereas normal gossip protocols gossip with peers
selected on a per-application basis, GO must select a good peer for each round of gossip in a
manner that optimizes over all applications. Secondly, because a single message can often
carry updates from multiple objects, GO must run an optimization protocol to decide which
objects to include in each message it sends.

3.4 What's in a type?

Live objects open the possibility of extending normal type systems to encompass distributed
behavioral patterns [19]. A replicated variable that represents an account balance in a banking
system might need strong reliability and fault-tolerance properties such as virtual synchrony,
while for a similar variable in a monitoring application, weaker reliability properties and
scalability of gossip might be a better match. Thus, to make live objects truly useful, we need a
way to describe such behaviors as a part of their types.

In QuickSilver, the type of a live object is a tuple, the elements of which specify different
“aspects” of the type (much like in aspect-oriented programming). One element is the object’s
interface (in the usual sense). Another is its “category” (replicated service, replicated variable,
event stream, gossip object etc.), which tells which communication protocol driver to use.
Other aspects configure the underlying dissemination substrate, and specify the object’s
reliability, fault-tolerance, and security properties.

By expressing distributed types this way, we enable a next step in which type information could
be used as part of the application design and implementation process. A development
environment such as Visual Studio would “understand” the possible distributed behaviors of
such a typed object, and could guide the developer through the process of implementing code
that will run correctly under the assumption that the communication drivers underlying the live

Approved for Public Release; Distribution Unlimited.

19



object implement the specified behaviors. Moreover, the runtime system can throw exceptions
if mistakes are made, for example if a component designed to work correctly only with live
virtually synchronous multicast streams tried to access a live multicast stream that has a
weaker QSM or best-effort reliability property.

Type-based programming tools and debugging tools have transformed the experience of
building applications for desktop environments. Service oriented architectures (which also
revolve around type systems, albeit simple ones) are having a similar impact in networked
applications that interact with services hosted in datacenters. Live objects are a natural step in
this direction, and bring the benefits of strong typing to the realm of decentralized peer-to-peer
applications. They suggest that the active web could be far more than just a veneer over the
same old Internet technologies.

3.5 Quicksilver Properties Framework

Earlier, we commented that the Properties Framework [11] extends QSM by allowing some
groups to have stronger reliability properties, defined using a high-level declarative Properties
Language. Using this language, we are able to support a number of important reliability models
— “reliability types”. Let’s look at two of these models and how they might assist the developer
of the “village sweep” mission discussed earlier:

e Virtual Synchrony is a powerful distributed computing model in which active programs join
process groups, within which multicasts are used to disseminate updates and other events.
At the moment a process joins, it can initialize itself using a state transfer from some active
member, and the virtual synchrony platform notifies all members each time membership
changes. The power of this model is that it can support consistency guarantees: all the
users of a virtual synchrony group see the same thing in the same order. This can be
important when multiple users are concurrently taking actions, and yet the “physical
world” needs to somehow order them. For example, suppose that several threats are
present and we want different soldiers to respond to different threats. With virtual
synchrony, the Quicksilver platform would enforce a single, system-wide event ordering,
hence all participants see the same events in the same sequence. This can then drive a
clean partitioning of roles.

e Transactions are a stronger execution model. Suppose that a power failure were to cause
a few machines to crash simultaneously. Although we didn’t make this clear in our
discussion of virtual synchrony, that model only provides consistency among live objects
that remain operational. Transactional live objects support the full one-copy serializability
version of the ACID model; with this guarantee, crashed objects can reconstruct a
consistent, agreed-upon state after they recover. However, these stronger guarantees
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come at a (steep) price: performance and scalability won’t be nearly as good. In our
scenario, transactional semantics would be used when recording situational state that
must be preserved for later analysis, distributed event e; occurs (“flows”)

. . . . . data flow e at node X3, at time tg ",
and in which multiple soldiers might i :
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In the Properties Framework, each object Figure 5 Distributed Event Flow in the Properties
can be configured to have the kind of Framework

consistency guarantee appropriate to the

way it will be used. Different models are expressed using a kind of script that the framework
“executes” to control the delivery of messages and other events, and to trigger actions such as
the forwarding of a message to repair a loss, or the sending of ordering information when a
batch of messages must be placed into a total order.

The term distributed data flow (also abbreviated as distributed flow) refers to a set of events
(see Figure 5) in a distributed application or protocol that satisfies the following informal
properties:

Asynchronous, non-blocking, and one-way. Each event represents a single instance of a non-
blocking, one-way, asynchronous method invocation or other form of explicit or implicit
message passing between two layers or software components. For example, each event might
represent a single request to multicast a packet, issued by an application layer to an underlying
multicast protocol. The requirement that events are one-way and asynchronous is important.
Invocations of methods that may return results would normally be represented as two separate
flows: one flow that represents the requests, and another flow that represents responses.

Homogeneous, unidirectional, and uniform. All events in the distributed flow serve the same
functional and logical purpose, and are related to one-another; generally, we require that they
represent method calls or message exchanges between instances of the same functional layers,
or instances of the same components, but perhaps on different nodes within a computer
network. Furthermore, all events must flow in the same direction (i.e., one type of a layer or
component always produces, and the other always consumes the events), and carry the same
type of a payload. For example, a set of events that includes all multicast requests issued by the
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same application layer to the same multicast protocol is a distributed flow. On the other hand,
a set of events that includes multicast requests made by different applications to different
multicast protocols would not be considered a distributed flow, and neither would be a set of
events that represent multicast requests as well as acknowledgments and error notifications.

Concurrent, continuous, and distributed. The flow usually includes all events that flow
between the two layers of software, simultaneously at different locations, and over a finite or
infinite period of time. Thus, in general, events in a distributed flow are distributed both in
space (they occur at different nodes) and in time (they occur at different times). For example,
the flow of multicast requests would include all such requests made by instances of the given
application on different nodes; normally, such flow would include events that occur on all
nodes participating in the given multicast protocol. A flow, in which all events occur at the same
node would be considered degenerate.

Formally, we represent each event in a distributed flow as a quadruple of the form (x,t,k,v),
where x is the location (e.g., the network address of a physical node) at which the event occurs,
t is the time at which this happens, k is a version, or a sequence number identifying the
particular event, and v is a value that represents the event payload (e.g., all the arguments
passed in a method call). Each distributed flow is a (possibly infinite) set of such quadruples that
satisfies the following three formal properties.

1. For any finite point in time t, there can be only finitely many events in the flow that
occur at time t or earlier. This implies that in which flow, one can always point to the
point in time at which the flow originated. The flow itself can be infinite; in such case, at
any point in time, eventually a new event will appear in the flow.

2. For any pair of events e; and e, that occur at the same location, if e; occurs at an earlier
time than e,, then the version number in e;must also be smaller than that of e,.

3. For any pair of events e; and e, that occur at the same location, if the two events have
the same version numbers, they must also have the same values.

In addition to the above, flows can have a number of additional properties.

e Consistency. A distributed flow is said to be consistent if events with the same version
always have the same value, even if they occur at different locations. Consistent flows
typically represent various sorts of global decisions made by the protocol or application.

e Monotonicity. A distributed flow is said to be weakly monotonic if for any pair of events
e; and e, that occur at the same location, if v has a smaller version than e,, then e; must
carry a smaller value than e,. A distributed flow is said to be strongly monotonic (or
simply monotonic) if this is true even for pairs of events e; and e, that occur at different
locations. Strongly monotonic flows are always consistent. They typically represent
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various sorts of irreversible decisions. Weakly monotonic flows may or may not be
consistent.

Distributed data flows serve a purpose analogous to variables or method parameters in
programming languages such as Java, in that they can represent state that is stored or
communicated by a layer of software. Unlike variables or parameters, which represent a unit of
state that resides in a single location, distributed flows are dynamic and distributed: they
simultaneously appear in multiple locations within the network at the same time. As such,
distributed flows are a more natural way of modeling the semantics and inner workings of
certain classes of distributed systems. In particular, the distributed data flow abstraction has
been used as a convenient way of expressing the high-level logical relationships between parts
of distributed protocols.

4.0 CONCLUSION - AN ARCHITECTURE FOR THE ACTIVE WEB

The Cornell AFRL funding permitted a complete prototype of the live objects system to be
created, tested extensively in the lab at Cornell, and shared through FreeBSD licensing in source
form for use on Windows and Linux platforms. Several real applications were created, including
a number that were designed jointly with our colleagues at AFRL and at the office of the
CIO/CTO of the Air Force in Washington, and demonstrate how live objects would function in
real military deployments. There have been substantial numbers of downloads by interested
developers. As noted earlier, this communications driver is breaking every performance record
we’re aware of in the technology space: raw throughput, scalability, tolerance of stress, and
robustness against broadcast storms and other forms of oscillatory behavior. The remainder of
the system (including the properties framework) is running as an experimental prototype and
tested under laboratory conditions. Other elements include a configuration manager service
that can run at Internet Scale, the GO subsystem mentioned above, and many elements of the
runtime and debugging/performance-tuning environment.

We believe that live objects enable a completely new kind of distributed programming, inspired
by the Web, but in which much of the content is dynamic and may be evolving in real-
time[12][9]. Live objects could represent video feeds, streams of media or other content
generated by participating computers, telemetry from sensors, etc. By integrating such content
into systems like Windows or J2EE (Java 2 Enterprise Environment) in a clean and natural way
that leverages the power of type systems and component integration technologies, but offers a
portal to distributed computing, we’re hoping to enable a revolution. Live objects could open
the door to a new and disruptive generation of Active Web applications that combine high data
rates with strong properties, including fault-tolerance, consistency, and security.
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5.0 PRESENTATIONS

Our research team is often invited to present work through lectures in various venues. The live
objects work was presented in talks at more than a dozen major universities, keynote talks at
several conferences and at many smaller workshops. In addition, our published papers were
presented in sessions at the corresponding conferences.

Dialog with Air Force Staff

Our work came to the attention of the Air Force CIO/CTO office in late 2008, when that group
was asked to study options for supporting disconnected information-enabled missions with full
dynamic situational awareness and encountered the GIG reach-back limitation mentioned
earlier. The CIO and CTO asked us to work with their DC-based teams to understand how live
objects might be used to educate the Air Force vendor community about the power of these
new technical options, how they work and how to incorporate them into military products that
must support GIG standards.

In this connection, a series of meetings during 2009 and 2010 were held in the offices of the
ClO at the Pentagon and those of the CTO in Arlington. The Cornell team created a number of
specialized demonstrations and ran them at the Pentagon and in the CTO’s office, using
multiple laptops and our own networking equipment so as to comply with military network
isolation rules. Presentations were also incorporated into the Cornell/AFRL workshop series, in
which Cornell researchers visited AFRL Information Directorate at Rome, New York on a regular
schedule, teaching mini-courses that helped AFRL research staff understand the technologies
involved, the underlying science, and to master the actual use of the live objects platform per-
se. Cornell also assisted AFRL in developing materials to present the findings of the effort to
the SAB (Scientific Advisory Board) during their 2009 review of the AFRL effort.

6.0 RESEARCHERS SUPPORTED

Kenneth Birman, Professor

Robbert Van Renesse, Principal Research Scientist

Daniel Freedman, Postdoctoral Associate

Krzysztof Ostrowski, Postdoctoral Associate, PhD Degree

Ymir Vigfusson, Graduate Research Assistant, 10/15/09, PhD Degree, Postdoctoral Associate at
IBM Research, Haifa

Robert Burgess, Graduate Research Assistant, 8/15/09

Haoyuan Li, Graduate Research Assistant, 8/15/09, MS Degree, Software Engineer at Conviva
Lonnie Princehouse, Graduate Research Assistant, 8/15/09
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Daniel Williams, Graduate Research Assistant, 8/15/09

Hussam Abu-Libdeh, Graduate Research Assistant, 5/15/09

Tudor Marian, Graduate Research Assistant, 12/31/08, PhD Degree, Postdoctoral Associate,
Cornell

Qi Huang, Postdoctoral Associate, PhD student starting Spring 2011

Tudor Marian, Graduate Research Assistant, 12/31/08, PhD Degree

7.0 SOFTWARE RELEASE

Our platform can be downloaded from http://liveobjects.codeplex.com/ .
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APPENDIX A - PUBLICATIONS

Our work yielded a number of publications, all of which have been uploaded to the Jiffy site and
are available to the public with no restrictions or limitations. The following table lists the ones
specifically tied to the live objects effort.

2010

[11 Kevlar: A Flexible Infrastructure for Wide-area Collaborative Applications. Qi Huang,
Daniel A. Freedman, Ymir Vigfusson, Ken Birman, and Bo Peng. ACM/IFIP/Usenix 11th
International Middleware Conference (Middleware 2010), Bangalore, India, Nov 29 -
Dec 3, 2010.

21 Enabling Tactical Edge Mashups with Live Objects. Daniel Freedman, Ken Birman, Krzys
Ostrowski, Mark Linderman, Robert Hillman, Albert Frantz Proceedings of the 15th
International Command and Control Research and Technology Symposium (ICCRTS '10),
Information Sharing and Collaboration Processes and Behaviors Track. Santa Monica,
CA, USA. June 22-24, 2010. Best paper in track; Best paper in conference.

3] Dr. Multicast: Rx for Data Center Communication Scalability. Ymir Vigfusson, Hussam
Abu-Libdeh, Mahesh Balakrishnan, Ken Birman, Robert Burgess, Haoyuan Li, Gregory
Chockler, Yoav Tock. Eurosys, April 2010 (Paris, France). ACM SIGOPS, pp. 349-362.

(41 Quilt: A Patchwork of Multicast Regions. Qi Huang, Ken Birman, Ymir Vigfusson,
Haoyuan Li. 4th ACM International Conference on Distributed EventOBased Systems
(DEBS2010). Cambridge, United Kingdom. July 2010.

2009

(5] Self-Replicating Objects for Multicore Platform. Krzysztof Ostrowski, Chuck Sakoda, and
Ken Birman. 24th European Conference on Object-Oriented Programming (ECOOP
2010).LNCS Volume 6183/2010, 452-477.

6] GO: Platform Support for Gossip Applications. Ymir Vigfusson, Qi Huang, Ken Birman,
Deepak Nataraj, ACM TOCS. October 2009.

(71 Affinity in Distributed Systems. Ymir Vigfusson, PhD dissertaton. Cornell University,
Sept. 2009. (Degree conferred Feb. 2010)

(8] GO: Platform Support For Gossip Applications. Ymir Vigfusson, Ken Birman, Qi Huang,
Deepak P. Nataraj. IEEE P2P 2009. Seattle, WA. September 9 - 11. pp: 222-231.

[91 Storing and Accessing Live Mashup Content in the Cloud. Krzysztof Ostrowski and Ken
Birman. 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems
and Middleware (LADIS 2009). Volume 44, Issue 2, April 2010.
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[10] Programming Live Distributed Objects with Distributed Data Flows. Krzysztof Ostrowski,
Ken Birman, and Danny Dolev. Technical Report, March 2009.

[11] Implementing Reliable Event Streams in Large Systems via Distributed Data Flows and
Recursive Delegation. Krzysztof Ostrowski, Ken Birman, DannyDolev, and Chuck Sakoda.
3rd ACM International Conference on Distributed Event-Based Systems (DEBS 2009).
Nashville, TN, USA. July 6-9, 2009.

[12] WS-OBIJECTS: Extending Service-Oriented Architecture with Hierarchical Composition of
Client-Side Asynchronous Event-Processing Logic. Krzysztof Ostrowski and Ken Birman.
7th IEEE International Conference on Web Services (ICWS 2009). Los Angeles, CA, USA.
July 9-10, 2009. pp: 25-34.

[13] Live Distributed Objects for Service Oriented Collaboration. Ken Birman, Jared Cantwell,
Daniel Freedman, Qi Huang, Petko Nikolov, Krzysztof Ostrowski. Third International
Conference on Intelligent Technologies for Interactive Entertainment (Intetain '09),
Demo Track. Amsterdam, The Netherlands. June 22, 2009.

[14] Edge Mashups for Service-Oriented Collaboration. Ken Birman, Jared Cantwell, Daniel
Freedman, Qi Huang, Petko Nikolov, and Krzysztof Ostrowski. IEEE Computer. Volume
42, Number 5, pgs 92-96. May 2009

[15] Building Collaboration Applications That Mix Web Services Hosted Content with P2P
Protocols. Ken Birman, Jared Cantwell, Daniel Freedman, Qi Huang, Petko Nikolov,
Krzysztof Ostrowski. In the proceedings of IEEE International Conference on Web
Services (ICWS). Los Angeles, CA. July 6-10, 2009.

2008

[16] SOLO: Self Organizing Live Objects. Qi Huang (Huazhong University of Science and
Technology), Ken Birman. Technical Report. December 2008.

[17] Using Live Distributed Objects for Office Automation. Jong Hoon Ahnn, Ken Birman,
Krzysztof Ostrowski, Robbert van Renesse. In proceedings of the ACM/IFIP/USENIX 9th
International Middleware Conference. Leuven, Belgium. December 2008.

Proof of concept work completed prior to the effort and cited in the text

(18] QuickSilver Scalable Multicast (QSM). Krzysztof Ostrowski, Ken Birman, Danny Dolev.
7th IEEE International Symposium on Network Computing and Applications (IEEE NCA
2008). Cambridge, MA. July 2008.

[19] Programming with Live Distributed Objects. Krzysztof Ostrowski, Ken Birman, Danny
Dolev, and Jong Hoon Ahnn. In Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP 2008). Cyprus. July 2008. J. Vitek, Ed. Lecture
Notes In Computer Science, vol. 5142. Springer-Verlag, Berlin, Heidelberg, 463-489.

[20] Ricochet: Lateral Error Correction for Time-Critical Multicast. Mahesh Balakrishnan, Ken
Birman, Amar Phanishayee, and Stefan Pleisch. In Proceedings of the 4th USENIX
Symposium on Networked Systems Design & Implementation (NSDI 07). Cambridge,
MA. April 2007.
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LIST OF ABBREVIATIONS, AND ACRONYMS

AFRL Air Force Research Laboratory

API Application Programming Interface

C2 Command and Control

CAC Computer Access Card

Clo Chief Information Officer (of the US Air Force)
CTO Chief Technology Officer (of the US Air Force)
DNS Domain Network Service

ESB Enterprise Service Bus

FAA Federal Aviation Administration

FEC Forward Error Correction

FIFO First In First Out

FreeBSD Free Berkeley Standard Distribution (public domain licensing)
GIG Global Information Grid

GO Gossip Objects

GPS Global Positioning System

GUI Graphical User Interface

IC2 Integrated Command and Control

IP/IPv4 Internet Protocol (version 4.0)

IP multicast Internet multicast protocol

IPTV Internet Protocol Television

IRISA Institute de Recherche en Informatique et Systemes Aléatoires
J2EE Java 2 Enterprise Environment

JFEX Joint Forces Expeditionary Exercise

LAN Local Area Network

.NET The Windows managed execution environment
QSM Quicksilver Scalable Multicast

SAB Scientific Advisory Board

SOA Service Oriented Architecture

TCP Transmission Control Protocol

uUDP User Datagram Protocol

URL Universal Resource Locator

WAN Wide Area Network

WS Web Services

XML Extensible Markup Language

XNA The Windows 3D graphical rendering subsystem
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